iT邦幫忙

2025 iThome 鐵人賽

DAY 23
0

小明的價差農業經營法

今天我們要深入學習期現套利策略的實際應用,這就像爸爸發現同樣的農產品在不同市場有價格差異時的套利行為。早上在產地收購便宜的蔬菜,下午到城裡的高檔超市賣出,賺取價差!期現套利也是類似的概念,利用現貨和期貨間的價格差異獲利。

期現套利基本原理

套利機會識別

套利機會識別

理論基礎

期貨理論價格公式:

F = S × e^(r-q)T

其中:

  • F = 期貨價格
  • S = 現貨價格
  • r = 無風險利率
  • q = 股息率(對加密貨幣為0)
  • T = 到期時間

期現套利策略實作

1. 基差監控系統

import asyncio
import pandas as pd
import numpy as np
from datetime import datetime, timedelta
import logging

class BasisMonitor:
    """基差監控系統"""
    
    def __init__(self, symbols=['BTCUSDT'], entry_threshold=0.005, exit_threshold=0.002):
        self.symbols = symbols
        self.entry_threshold = entry_threshold  # 0.5% 進場閾值
        self.exit_threshold = exit_threshold    # 0.2% 出場閾值
        self.basis_history = {symbol: [] for symbol in symbols}
        self.current_positions = {}
        
    async def calculate_basis(self, spot_price, futures_price, funding_rate=0):
        """計算基差和年化收益率"""
        
        # 基差(絕對值)
        basis = futures_price - spot_price
        
        # 基差率(相對值)
        basis_rate = basis / spot_price
        
        # 考慮資金費率的年化收益
        # 假設8小時收取一次資金費率
        annual_funding_cost = funding_rate * 3 * 365  # 每日3次 × 365天
        
        # 調整後的套利收益
        adjusted_basis_rate = basis_rate - annual_funding_cost
        
        return {
            'basis': basis,
            'basis_rate': basis_rate,
            'adjusted_basis_rate': adjusted_basis_rate,
            'funding_rate': funding_rate,
            'annual_funding_cost': annual_funding_cost
        }
    
    async def identify_arbitrage_opportunity(self, symbol, spot_data, futures_data):
        """識別套利機會"""
        
        spot_price = spot_data['price']
        futures_price = futures_data['price']
        funding_rate = futures_data.get('funding_rate', 0)
        
        basis_info = await self.calculate_basis(spot_price, futures_price, funding_rate)
        
        # 記錄歷史基差
        basis_record = {
            'timestamp': datetime.now(),
            'spot_price': spot_price,
            'futures_price': futures_price,
            'basis': basis_info['basis'],
            'basis_rate': basis_info['basis_rate'],
            'adjusted_basis_rate': basis_info['adjusted_basis_rate'],
            'funding_rate': funding_rate
        }
        
        self.basis_history[symbol].append(basis_record)
        
        # 保持最近1000筆記錄
        if len(self.basis_history[symbol]) > 1000:
            self.basis_history[symbol] = self.basis_history[symbol][-1000:]
        
        # 判斷套利機會
        opportunity = None
        adjusted_rate = basis_info['adjusted_basis_rate']
        
        if adjusted_rate > self.entry_threshold:
            # 正向套利:期貨溢價過高
            opportunity = {
                'type': 'positive_arbitrage',
                'action': 'sell_futures_buy_spot',
                'expected_return': adjusted_rate,
                'spot_action': 'buy',
                'futures_action': 'sell',
                'confidence': min(adjusted_rate / self.entry_threshold, 3.0)
            }
            
        elif adjusted_rate < -self.entry_threshold:
            # 反向套利:期貨貼水過深
            opportunity = {
                'type': 'negative_arbitrage', 
                'action': 'buy_futures_sell_spot',
                'expected_return': abs(adjusted_rate),
                'spot_action': 'sell',
                'futures_action': 'buy',
                'confidence': min(abs(adjusted_rate) / self.entry_threshold, 3.0)
            }
            
        elif symbol in self.current_positions and abs(adjusted_rate) < self.exit_threshold:
            # 平倉機會:基差收斂
            opportunity = {
                'type': 'close_arbitrage',
                'action': 'close_position',
                'expected_return': self.current_positions[symbol]['unrealized_pnl'],
                'confidence': 1.0
            }
        
        return opportunity, basis_info
    
    def get_basis_statistics(self, symbol, lookback_days=30):
        """獲取基差統計資訊"""
        
        if symbol not in self.basis_history or not self.basis_history[symbol]:
            return None
        
        # 獲取最近N天的數據
        cutoff_time = datetime.now() - timedelta(days=lookback_days)
        recent_data = [
            record for record in self.basis_history[symbol] 
            if record['timestamp'] > cutoff_time
        ]
        
        if not recent_data:
            return None
        
        basis_rates = [record['basis_rate'] for record in recent_data]
        adjusted_rates = [record['adjusted_basis_rate'] for record in recent_data]
        
        stats = {
            'mean_basis_rate': np.mean(basis_rates),
            'std_basis_rate': np.std(basis_rates),
            'mean_adjusted_rate': np.mean(adjusted_rates),
            'std_adjusted_rate': np.std(adjusted_rates),
            'min_basis_rate': np.min(basis_rates),
            'max_basis_rate': np.max(basis_rates),
            'percentile_25': np.percentile(basis_rates, 25),
            'percentile_75': np.percentile(basis_rates, 75),
            'samples_count': len(recent_data)
        }
        
        return stats

class ArbitrageStrategy:
    """期現套利策略"""
    
    def __init__(self, initial_capital=100000):
        self.initial_capital = initial_capital
        self.available_capital = initial_capital
        self.positions = {}
        self.trade_history = []
        self.basis_monitor = BasisMonitor()
        
    async def execute_arbitrage(self, symbol, opportunity, spot_price, futures_price):
        """執行套利策略"""
        
        if opportunity['type'] in ['positive_arbitrage', 'negative_arbitrage']:
            return await self._open_arbitrage_position(
                symbol, opportunity, spot_price, futures_price
            )
        elif opportunity['type'] == 'close_arbitrage':
            return await self._close_arbitrage_position(symbol, spot_price, futures_price)
    
    async def _open_arbitrage_position(self, symbol, opportunity, spot_price, futures_price):
        """開啟套利倉位"""
        
        # 計算倉位大小(使用20%的可用資金)
        position_capital = self.available_capital * 0.2
        
        # 基於期望收益調整倉位大小
        confidence_multiplier = min(opportunity['confidence'], 2.0)
        adjusted_capital = position_capital * confidence_multiplier
        
        spot_quantity = adjusted_capital / spot_price
        futures_quantity = spot_quantity  # 等量對沖
        
        # 檢查資金是否足夠
        required_capital = spot_quantity * spot_price
        if required_capital > self.available_capital:
            return False, "資金不足"
        
        # 模擬交易執行
        spot_commission = spot_quantity * spot_price * 0.001  # 0.1% 手續費
        futures_margin = futures_quantity * futures_price * 0.1  # 10倍槓桿,10%保證金
        futures_commission = futures_quantity * futures_price * 0.0004  # 0.04% 手續費
        
        total_cost = required_capital + spot_commission + futures_margin + futures_commission
        
        if total_cost > self.available_capital:
            return False, "總成本超過可用資金"
        
        # 更新倉位
        position = {
            'symbol': symbol,
            'type': opportunity['type'],
            'entry_time': datetime.now(),
            'spot_quantity': spot_quantity,
            'futures_quantity': futures_quantity,
            'spot_entry_price': spot_price,
            'futures_entry_price': futures_price,
            'spot_action': opportunity['spot_action'],
            'futures_action': opportunity['futures_action'],
            'expected_return': opportunity['expected_return'],
            'total_cost': total_cost,
            'spot_commission': spot_commission,
            'futures_commission': futures_commission,
            'futures_margin': futures_margin
        }
        
        self.positions[symbol] = position
        self.available_capital -= total_cost
        
        # 記錄交易
        trade_record = {
            'timestamp': datetime.now(),
            'action': 'open_arbitrage',
            'symbol': symbol,
            'type': opportunity['type'],
            'spot_price': spot_price,
            'futures_price': futures_price,
            'quantity': spot_quantity,
            'expected_return': opportunity['expected_return'],
            'total_cost': total_cost
        }
        
        self.trade_history.append(trade_record)
        
        return True, f"成功開啟 {symbol} 套利倉位"
    
    async def _close_arbitrage_position(self, symbol, spot_price, futures_price):
        """平倉套利倉位"""
        
        if symbol not in self.positions:
            return False, "無對應套利倉位"
        
        position = self.positions[symbol]
        
        # 計算損益
        spot_pnl = 0
        futures_pnl = 0
        
        if position['spot_action'] == 'buy':
            # 現貨做多,現在賣出
            spot_pnl = position['spot_quantity'] * (spot_price - position['spot_entry_price'])
        else:
            # 現貨做空,現在買入
            spot_pnl = position['spot_quantity'] * (position['spot_entry_price'] - spot_price)
        
        if position['futures_action'] == 'sell':
            # 期貨做空,現在買入平倉
            futures_pnl = position['futures_quantity'] * (position['futures_entry_price'] - futures_price)
        else:
            # 期貨做多,現在賣出平倉
            futures_pnl = position['futures_quantity'] * (futures_price - position['futures_entry_price'])
        
        # 計算平倉手續費
        spot_close_commission = position['spot_quantity'] * spot_price * 0.001
        futures_close_commission = position['futures_quantity'] * futures_price * 0.0004
        
        total_pnl = spot_pnl + futures_pnl - spot_close_commission - futures_close_commission
        
        # 釋放資金
        released_capital = position['total_cost'] + total_pnl
        self.available_capital += released_capital
        
        # 記錄平倉交易
        trade_record = {
            'timestamp': datetime.now(),
            'action': 'close_arbitrage',
            'symbol': symbol,
            'type': position['type'],
            'spot_price': spot_price,
            'futures_price': futures_price,
            'quantity': position['spot_quantity'],
            'spot_pnl': spot_pnl,
            'futures_pnl': futures_pnl,
            'total_pnl': total_pnl,
            'return_rate': total_pnl / position['total_cost'],
            'holding_period': (datetime.now() - position['entry_time']).total_seconds() / 3600  # 小時
        }
        
        self.trade_history.append(trade_record)
        
        # 移除倉位
        del self.positions[symbol]
        
        return True, f"成功平倉 {symbol} 套利倉位,損益: ${total_pnl:.2f}"
    
    def calculate_unrealized_pnl(self, symbol, current_spot_price, current_futures_price):
        """計算未實現損益"""
        
        if symbol not in self.positions:
            return 0
        
        position = self.positions[symbol]
        
        # 計算當前損益
        spot_pnl = 0
        futures_pnl = 0
        
        if position['spot_action'] == 'buy':
            spot_pnl = position['spot_quantity'] * (current_spot_price - position['spot_entry_price'])
        else:
            spot_pnl = position['spot_quantity'] * (position['spot_entry_price'] - current_spot_price)
        
        if position['futures_action'] == 'sell':
            futures_pnl = position['futures_quantity'] * (position['futures_entry_price'] - current_futures_price)
        else:
            futures_pnl = position['futures_quantity'] * (current_futures_price - position['futures_entry_price'])
        
        total_unrealized_pnl = spot_pnl + futures_pnl
        
        return total_unrealized_pnl
    
    def get_performance_summary(self):
        """獲取績效總結"""
        
        if not self.trade_history:
            return {}
        
        closed_trades = [trade for trade in self.trade_history if trade['action'] == 'close_arbitrage']
        
        if not closed_trades:
            return {'message': '尚無完成的套利交易'}
        
        total_pnl = sum(trade['total_pnl'] for trade in closed_trades)
        total_return = total_pnl / self.initial_capital
        
        winning_trades = [trade for trade in closed_trades if trade['total_pnl'] > 0]
        win_rate = len(winning_trades) / len(closed_trades)
        
        avg_return = np.mean([trade['return_rate'] for trade in closed_trades])
        avg_holding_period = np.mean([trade['holding_period'] for trade in closed_trades])
        
        return {
            'total_trades': len(closed_trades),
            'winning_trades': len(winning_trades),
            'win_rate': win_rate,
            'total_pnl': total_pnl,
            'total_return': total_return,
            'avg_return_per_trade': avg_return,
            'avg_holding_period_hours': avg_holding_period,
            'available_capital': self.available_capital,
            'active_positions': len(self.positions)
        }

# 套利策略範例執行
async def run_arbitrage_example():
    """運行套利策略範例"""
    
    strategy = ArbitrageStrategy(initial_capital=100000)
    
    # 模擬市場數據
    market_scenarios = [
        # 場景1: 期貨溢價過高,正向套利機會
        {
            'spot_price': 50000,
            'futures_price': 50300,  # 0.6% 溢價
            'funding_rate': 0.0001
        },
        # 場景2: 價差收斂,平倉機會
        {
            'spot_price': 50100,
            'futures_price': 50150,  # 0.1% 溢價
            'funding_rate': 0.0001
        },
        # 場景3: 期貨貼水,反向套利機會
        {
            'spot_price': 49000,
            'futures_price': 48700,  # -0.61% 貼水
            'funding_rate': -0.0002
        }
    ]
    
    print("期現套利策略模擬:")
    print("=" * 50)
    
    for i, scenario in enumerate(market_scenarios, 1):
        print(f"\n場景 {i}:")
        print(f"現貨價格: ${scenario['spot_price']:,}")
        print(f"期貨價格: ${scenario['futures_price']:,}")
        print(f"資金費率: {scenario['funding_rate']:.4%}")
        
        # 識別套利機會
        opportunity, basis_info = await strategy.basis_monitor.identify_arbitrage_opportunity(
            'BTCUSDT',
            {'price': scenario['spot_price']},
            {'price': scenario['futures_price'], 'funding_rate': scenario['funding_rate']}
        )
        
        print(f"基差率: {basis_info['basis_rate']:.4%}")
        print(f"調整後基差率: {basis_info['adjusted_basis_rate']:.4%}")
        
        if opportunity:
            print(f"套利機會: {opportunity['type']}")
            print(f"預期收益率: {opportunity['expected_return']:.4%}")
            
            # 執行套利
            success, message = await strategy.execute_arbitrage(
                'BTCUSDT', opportunity, scenario['spot_price'], scenario['futures_price']
            )
            
            print(f"執行結果: {message}")
            
            # 顯示當前倉位狀態
            if 'BTCUSDT' in strategy.positions:
                position = strategy.positions['BTCUSDT']
                unrealized_pnl = strategy.calculate_unrealized_pnl(
                    'BTCUSDT', scenario['spot_price'], scenario['futures_price']
                )
                print(f"未實現損益: ${unrealized_pnl:.2f}")
        else:
            print("無套利機會")
        
        print(f"可用資金: ${strategy.available_capital:,.2f}")
    
    # 顯示最終績效
    print("\n" + "=" * 50)
    print("績效總結:")
    performance = strategy.get_performance_summary()
    
    if 'message' in performance:
        print(performance['message'])
    else:
        print(f"總交易次數: {performance['total_trades']}")
        print(f"勝率: {performance['win_rate']:.2%}")
        print(f"總損益: ${performance['total_pnl']:.2f}")
        print(f"總收益率: {performance['total_return']:.2%}")
        print(f"平均持倉時間: {performance['avg_holding_period_hours']:.1f} 小時")

# 執行範例
await run_arbitrage_example()

進階套利策略

1. 動態對沖比例

class DynamicHedgeRatioArbitrage:
    """動態對沖比例套利"""
    
    def __init__(self):
        self.hedge_ratios = {}
        
    def calculate_optimal_hedge_ratio(self, spot_returns, futures_returns, lookback_period=30):
        """計算最優對沖比例"""
        
        # 使用最小方差對沖比例
        # h* = Cov(ΔS, ΔF) / Var(ΔF)
        
        if len(spot_returns) < lookback_period or len(futures_returns) < lookback_period:
            return 1.0  # 預設1:1對沖
        
        recent_spot = spot_returns[-lookback_period:]
        recent_futures = futures_returns[-lookback_period:]
        
        covariance = np.cov(recent_spot, recent_futures)[0, 1]
        futures_variance = np.var(recent_futures)
        
        if futures_variance == 0:
            return 1.0
        
        optimal_ratio = covariance / futures_variance
        
        # 限制對沖比例在合理範圍內
        optimal_ratio = max(min(optimal_ratio, 1.5), 0.5)
        
        return optimal_ratio
    
    def adjust_position_sizes(self, spot_quantity, optimal_hedge_ratio):
        """調整倉位大小"""
        
        futures_quantity = spot_quantity * optimal_hedge_ratio
        
        return {
            'spot_quantity': spot_quantity,
            'futures_quantity': futures_quantity,
            'hedge_ratio': optimal_hedge_ratio,
            'hedge_effectiveness': min(optimal_hedge_ratio, 1.0)
        }

class MultiLegArbitrage:
    """多腿套利策略"""
    
    def __init__(self):
        self.active_strategies = {}
        
    async def calendar_spread_arbitrage(self, near_month_price, far_month_price, 
                                       near_expiry_days, far_expiry_days):
        """日曆價差套利"""
        
        # 計算年化收益率差異
        near_annual_rate = np.log(near_month_price / far_month_price) * (365 / (far_expiry_days - near_expiry_days))
        
        # 如果遠月合約相對便宜,做多遠月做空近月
        if near_annual_rate > 0.1:  # 10% 年化差異
            return {
                'strategy': 'calendar_spread',
                'action': 'long_far_short_near',
                'near_action': 'sell',
                'far_action': 'buy',
                'expected_convergence': near_annual_rate
            }
        elif near_annual_rate < -0.1:
            return {
                'strategy': 'calendar_spread',
                'action': 'long_near_short_far', 
                'near_action': 'buy',
                'far_action': 'sell',
                'expected_convergence': abs(near_annual_rate)
            }
        
        return None
    
    async def cross_exchange_arbitrage(self, exchange_prices):
        """跨交易所套利"""
        
        opportunities = []
        exchanges = list(exchange_prices.keys())
        
        for i in range(len(exchanges)):
            for j in range(i + 1, len(exchanges)):
                exchange_a = exchanges[i]
                exchange_b = exchanges[j]
                
                price_a = exchange_prices[exchange_a]['price']
                price_b = exchange_prices[exchange_b]['price']
                
                # 考慮交易成本
                cost_a = exchange_prices[exchange_a].get('trading_cost', 0.002)
                cost_b = exchange_prices[exchange_b].get('trading_cost', 0.002)
                
                # 計算淨價差
                gross_spread = abs(price_a - price_b) / min(price_a, price_b)
                net_spread = gross_spread - cost_a - cost_b
                
                if net_spread > 0.003:  # 0.3% 最小利潤要求
                    if price_a > price_b:
                        opportunities.append({
                            'type': 'cross_exchange_arbitrage',
                            'buy_exchange': exchange_b,
                            'sell_exchange': exchange_a,
                            'buy_price': price_b,
                            'sell_price': price_a,
                            'gross_spread': gross_spread,
                            'net_spread': net_spread,
                            'profit_potential': net_spread
                        })
                    else:
                        opportunities.append({
                            'type': 'cross_exchange_arbitrage',
                            'buy_exchange': exchange_a,
                            'sell_exchange': exchange_b,
                            'buy_price': price_a,
                            'sell_price': price_b,
                            'gross_spread': gross_spread,
                            'net_spread': net_spread,
                            'profit_potential': net_spread
                        })
        
        return opportunities

2. 風險管理增強

class ArbitrageRiskManager:
    """套利風險管理器"""
    
    def __init__(self, max_position_count=5, max_capital_allocation=0.5):
        self.max_position_count = max_position_count
        self.max_capital_allocation = max_capital_allocation
        self.risk_limits = {
            'max_basis_deviation': 0.02,  # 2% 最大基差偏離
            'max_holding_period': 24,     # 24 小時最大持倉時間
            'max_individual_loss': 0.05,  # 5% 單筆最大損失
            'max_daily_loss': 0.10        # 10% 日最大損失
        }
        
    def validate_arbitrage_opportunity(self, opportunity, current_positions, 
                                     portfolio_value, daily_pnl):
        """驗證套利機會的風險"""
        
        validation_results = {
            'approved': True,
            'warnings': [],
            'rejections': []
        }
        
        # 檢查倉位數量限制
        if len(current_positions) >= self.max_position_count:
            validation_results['approved'] = False
            validation_results['rejections'].append('超過最大倉位數量限制')
        
        # 檢查資金分配限制
        total_allocated = sum(pos.get('total_cost', 0) for pos in current_positions.values())
        allocation_ratio = total_allocated / portfolio_value
        
        if allocation_ratio > self.max_capital_allocation:
            validation_results['approved'] = False
            validation_results['rejections'].append('超過最大資金分配比例')
        
        # 檢查基差偏離度
        if abs(opportunity.get('expected_return', 0)) > self.risk_limits['max_basis_deviation']:
            validation_results['warnings'].append('基差偏離度過大,需要謹慎')
        
        # 檢查日損失限制
        if daily_pnl < -self.risk_limits['max_daily_loss'] * portfolio_value:
            validation_results['approved'] = False
            validation_results['rejections'].append('超過日損失限制')
        
        return validation_results
    
    def calculate_position_size(self, opportunity, available_capital, volatility):
        """基於風險計算倉位大小"""
        
        # 基礎倉位大小
        base_allocation = 0.2  # 20%
        
        # 根據預期收益調整
        return_adjustment = min(opportunity.get('expected_return', 0) * 10, 1.0)
        
        # 根據波動性調整
        volatility_adjustment = max(0.5, 1 - volatility * 5)
        
        # 最終倉位大小
        final_allocation = base_allocation * return_adjustment * volatility_adjustment
        position_size = available_capital * final_allocation
        
        return {
            'position_size': position_size,
            'allocation_ratio': final_allocation,
            'return_adjustment': return_adjustment,
            'volatility_adjustment': volatility_adjustment
        }
    
    def monitor_position_risks(self, positions, current_prices):
        """監控倉位風險"""
        
        risk_alerts = []
        
        for symbol, position in positions.items():
            # 檢查持倉時間
            holding_hours = (datetime.now() - position['entry_time']).total_seconds() / 3600
            if holding_hours > self.risk_limits['max_holding_period']:
                risk_alerts.append({
                    'type': 'holding_period_exceeded',
                    'symbol': symbol,
                    'holding_hours': holding_hours,
                    'severity': 'medium'
                })
            
            # 檢查單筆損失
            if symbol in current_prices:
                spot_price = current_prices[symbol]['spot']
                futures_price = current_prices[symbol]['futures']
                
                unrealized_pnl = self._calculate_unrealized_pnl(position, spot_price, futures_price)
                loss_ratio = abs(unrealized_pnl) / position['total_cost']
                
                if unrealized_pnl < 0 and loss_ratio > self.risk_limits['max_individual_loss']:
                    risk_alerts.append({
                        'type': 'individual_loss_exceeded',
                        'symbol': symbol,
                        'loss_ratio': loss_ratio,
                        'unrealized_pnl': unrealized_pnl,
                        'severity': 'high'
                    })
        
        return risk_alerts
    
    def _calculate_unrealized_pnl(self, position, current_spot, current_futures):
        """計算未實現損益"""
        # 實作與之前相同的邏輯
        pass

實戰考慮因素

1. 市場微觀結構影響

市場微觀結構影響

2. 執行優化策略

class ArbitrageExecutionOptimizer:
    """套利執行優化器"""
    
    def __init__(self):
        self.execution_algorithms = ['market', 'limit', 'iceberg', 'twap']
        
    def optimize_execution_strategy(self, order_size, market_depth, volatility):
        """優化執行策略"""
        
        strategy = {
            'algorithm': 'market',
            'split_orders': False,
            'execution_timeframe': 'immediate'
        }
        
        # 根據訂單大小調整
        if order_size > market_depth * 0.1:  # 訂單超過市場深度10%
            strategy['algorithm'] = 'iceberg'
            strategy['split_orders'] = True
            strategy['chunk_size'] = market_depth * 0.05
            strategy['execution_timeframe'] = 'extended'
        
        # 根據波動性調整
        if volatility > 0.02:  # 高波動性
            strategy['algorithm'] = 'limit'
            strategy['price_improvement_attempts'] = 3
            strategy['timeout'] = 30  # 30秒超時
        
        return strategy
    
    async def execute_arbitrage_orders(self, spot_order, futures_order, execution_strategy):
        """執行套利訂單"""
        
        if execution_strategy['algorithm'] == 'market':
            return await self._execute_market_orders(spot_order, futures_order)
        elif execution_strategy['algorithm'] == 'limit':
            return await self._execute_limit_orders(spot_order, futures_order, execution_strategy)
        elif execution_strategy['algorithm'] == 'iceberg':
            return await self._execute_iceberg_orders(spot_order, futures_order, execution_strategy)
        
    async def _execute_market_orders(self, spot_order, futures_order):
        """執行市價單"""
        # 同時執行現貨和期貨訂單以最小化基差風險
        results = await asyncio.gather(
            self._submit_spot_order(spot_order),
            self._submit_futures_order(futures_order),
            return_exceptions=True
        )
        
        return self._process_execution_results(results)
    
    async def _execute_limit_orders(self, spot_order, futures_order, strategy):
        """執行限價單"""
        # 根據當前買賣價差設定限價
        spot_limit_price = spot_order['price'] * (1 + 0.0005)  # 小幅改善價格
        futures_limit_price = futures_order['price'] * (1 - 0.0005)
        
        # 提交限價單
        spot_result = await self._submit_limit_order(spot_order, spot_limit_price)
        futures_result = await self._submit_limit_order(futures_order, futures_limit_price)
        
        return self._process_limit_results(spot_result, futures_result, strategy)

小結

今天我們深入學習了期現套利策略的實際應用,就像掌握了在不同市場間買賣農產品的精髓。重要概念包括:

套利策略核心:

  • 基差監控和機會識別
  • 風險控制和倉位管理
  • 執行優化和成本控制
  • 多腿策略和動態對沖

實戰要點:

  • 考慮資金費率的影響
  • 注意市場微觀結構
  • 優化執行策略
  • 持續風險監控

成功關鍵:

  • 快速的執行能力
  • 精確的風險計算
  • 完善的監控系統
  • 靈活的策略調整

常見挑戰:

  • 競爭日益激烈
  • 利潤空間縮小
  • 技術要求提高
  • 資金需求增加

記住爸爸做生意的原則:「穩賺不賠的生意不多,但只要細心觀察,總能找到機會」。期現套利雖然看似穩健,但也需要專業的技術和嚴格的風險管理!

明天我們將學習回測系統的建立,為策略驗證打下堅實的基礎。


下一篇:Day 24 - Backtesting


上一篇
Day 22: 探討回測、虛擬單、上線
系列文
小資族的量化交易 10123
圖片
  熱門推薦
圖片
{{ item.channelVendor }} | {{ item.webinarstarted }} |
{{ formatDate(item.duration) }}
直播中

尚未有邦友留言

立即登入留言